• Home
  • Video Courses
  • Tools – Cloud Comparison
  • Open Book & References
    • Google Anthos
    • Ethical AI
    • Production Ready Microservices Using Google Cloud
    • AI Chatbots
    • Enterprise IoT
    • Enterprise Blockchain
    • Cognitive IoT
  • Solution Bytes
    • AWS Solutions
    • GCP Solutions
    • Enterprise Architecture
    • Artificial Intelligence
  • About
  • Subscribe
  • Trends
  • Home
  • Video Courses
  • Tools – Cloud Comparison
  • Open Book & References
    • Google Anthos
    • Ethical AI
    • Production Ready Microservices Using Google Cloud
    • AI Chatbots
    • Enterprise IoT
    • Enterprise Blockchain
    • Cognitive IoT
  • Solution Bytes
    • AWS Solutions
    • GCP Solutions
    • Enterprise Architecture
    • Artificial Intelligence
  • About
  • Subscribe
  • Trends

Enterprise IoT

home/Reference/Enterprise IoT
Expand All Collapse All
  • What is Internet of Things
  •  IoT Architecture, Components And Stack View
    •   Device Layer
      • Sensors
      • Actuators and Prototype devices
    •   Communication Layer and Communication Strategy
      • Communication Protocols
      • Application Protocols
      • Industry Protocols
    • Core Platform Layer
    • Analytics Platform Layer
    • Cognitive Platform Layer
    • Solutions Layer
    • IoT Security And Management
  •  Application Of IoT In Manufacturing
    •   Monitoring & Utilization
      • Asset Management
      • Instrumentation
      • Handle Connectivity
      • Perform Monitoring
    • Condition Based Maintenance
    • Predictive Maintenance
    • Optimization
    • Connecting ‘Connected Solutions‘
    • IoT Strategy for Connected Car Use Case
    • IoT Strategy for Connected Home Application
  •  Building Application With Microsoft IoT Platform
    •   Azure IoT Implementation Overview
      • Building Machine Learning Models
      • Integrating Machine Learning Models with Real-time Flow
  •  Building Application With IBM IoT Platform
    • Connected Elevator Solution Using IBM IoT Stack
  •  Building Application With Amazon IoT Platform
    • Connected Car Solution Using Amazon IoT
  •  Building Application With GE Predix IoT Platform
    • Connected Elevator Solution Using Predix IoT Stack
  • Building Application With Open Source IoT Stack
  • IoT Cloud Provider Comparison Chart

Optimization

navveen

Optimization phase is all about identifying new insights based on the existing data that can further help refine the manufacturing process. A large volume of data generated by the devices, together with events generated by the system and various insights from predictive and condition based maintenance opens up the door for identifying and realizing new requirements, which further enriches connected solution design to derive better outcomes.

Optimization can happen during every phase viz- monitoring, condition, and predictive-based maintenance. We called this out as a separate phase as this is an important activity to track on how applying IoT optimizes the current process and the connected products. For instance, using the outcome of predictive maintenance, one can understand failure patterns better and look at corrective ways to schedule services across the globe and order spare parts effectively and in turn optimize the supply chain process.

Going back to the elevator use case, if the elevator is fully occupied and it stops at multiple floors due to passengers wanting to enter, only to find that there is no room to enter. This can annoy passengers who are inside and outside of the elevator. These kinds of pattern (which are not failure conditions) can be detected as part of monitoring phase and therefore it can be optimized by creating a rule not to stop at floors when load is full other than the floors selected by the passengers inside the elevator and notifying passengers waiting for the elevator with the appropriate status. To inspect the user has already taken another elevator, sensors can be applied to track the movement and presence of persons on each floor and share the status at runtime, which is picked up by the incoming elevator and not to stop at the corresponding floor.

Take another example of various 100 storey buildings (in future tall skyscrapers would be quite common), how would a system optimize elevators to ensure maximum passenger satisfaction and least waiting time for passengers taking the elevators, fewer stops per trip and an organized traffic flow to prevent crowding of passengers. These are the cases where optimization and innovation can play an important part, and that would mean looking at the elevator IoT solution holistically and not just relying only on data provided by the elevators. It would mean determining connected dots like passenger movements, crowd density at each floor, or even devising smarter algorithms to utilize the data available and suggest optimized steps/routes to the elevator system.

As we move into the future of a connected world, we would see various such use cases which primarily focuses on customer satisfaction and employing new innovations to solve existing problem using the connected information.

Was this helpful?

3 Yes  No
Related Solutions
  • IoT Cloud Provider Comparison Chart
  • Building Application With Open Source IoT Stack
  • Connected Elevator Solution Using Predix IoT Stack
  • Building Application With GE Predix IoT Platform
  • Connected Car Solution Using Amazon IoT
  • Building Application With Amazon IoT Platform
© 2021 Navveen Balani (https://navveenbalani.dev/) |. All rights reserved.